MHUB

Designing for Product Launch Success May 17, 2019

Jim Shaw (Fellow mHUB Member)

MHUB 965 WEST CHICAGO AVENUE CHICAGO, IL 60642

NORTHROP GRUMMAN	Kodak	HEIDTS.COM	
Rolling Meadows, IL	Wheeling, IL	Lake Zurich, IL	mHUB
2002-2007 Missile Defense	2007-2011 Commercial Products	2011-2013 Automotive Aftermarket	2013-now CAD/CAE Training

→ mHUB Programming: **мнив** Product Development

Monthly Classes that cover the Product Development Process

- Introductory (January June)
 - Align with the stages of your product
 - Correspond to funding milestones
- Advanced (July December)
 - Deeper Dives into the core topics
 - Guest visits from Real Experts

Today's Agenda

- Preparation/Documentation
- Process/Technology Overview
- Designing for Manufacturing
- Designing for Assembly
- Financing Tooling Costs
- Resources

→ Production Launch: ▶ The Big Picture

"Everything needed to Fabricate, Assemble, and Deliver your product"

→ Production Launch: ▶ Bill of Material

→ Production Launch: ▶ Bill of Material

Level	Part No.	Description	QTY	Unit
1	120-001	Trolley, 3 wheeled	1.0000	EA
2	110-001	Wheel Housing	3.0000	EA
3	100-001	MS Bolt, M10x70, Galv	1.0000	EA
3	100-002	M10, washer, Galv	2.0000	EA
3	100-003	M10, Nut, Galv	3.0000	EA
3	100-004	MS Bolt, M10x30, Galv	1.0000	EA
3	100-005	M10 Square Nut	1.0000	EA
3	102-108	Wheel, with tyre, 100mm	1.0000	EA
3	110-002	Top Piece	1.0000	EA
4	105-001	MS Flat 80x8	0.0500	LG
4	111-001	Galvanising	0.0010	KG
4	130-001	Labor	0.5000	HR
3	110-003	Side Piece	2.0000	EA
4	105-001	MS Flat 80x8	0.1000	LG
4	111-001	Galvanising	0.0010	KG
4	130-001	Labor	0.1000	HR
2	112-001	Plywood Platform	1.0000	EA
3	106-001	Plywood,12mm,2400x1200	0.1250	SH
3	111-006	Varnish, Semi Gloss	0.0500	1
3	130-001	Labor	0.6500	HR

→ Production Launch: ▶ The Engineering Drawing

- No part is perfect
- Tolerance = Range of Acceptance
- Tolerance is DIRECTLY RELATED TO COST

→ Production Launch: ▶ Processes for Metals

CNC Machining

- Can be highly Automated
- Very precise, repeatable
- Low tooling cost
- Good for Low volume (10's 100's)
- Surface finish = excellent

▶ Production Launch: ▶ Processes for Metals

Casting & Forging

- Less Automated than CNC Machining
- Less Waste than CNC
- Higher Tooling Costs
- Cheaper Part Cost
- Quicker to make, but more labor
- Good for medium high volume (1,000's – 10,000's)
- Poor surface finish

▶ Production Launch: ▶ Processes for Plastic

Sheet Metal Forming

- Various levels of Automation
- Good Surface Finish
- Low Tooling Cost
- Medium Part Cost
- Medium Volume (100's 1,000's)
- Sheet Metal Stamping
 - Highly Automated
 - Good Surface Finish
 - Very High Tooling Cost
 - Very Low Part Cost
 - Very High Volume (1,000+)

Production Launch: **MHUB** Dimensions & Tolerances

Plastic Injection Molding

- Highly Automated
- Medium-High Tooling Cost
- Very Low Part Cost
- Very High Volume (1,000+)

→ Production Launch: ▶ Becondary Processes

- Permanently altering the material properties (stronger, more reliable) after it is formed in its shape.
 - Hardening/Tempering
 - Annealing
 - Case Hardening
 - Inductive/Furnace
- Types of Finishes
 - Decoration, Durability, Environmental
 - Texturizing
 - Plating
 - Grinding/Polishing
 - Painting/Powder Coating
 - Etching
- Find out if the CM does it in house or not
 - Keep an eye on "WIP Shipping costs"

→ Production Launch: ▶ Designing for Manufacturing

- 1. Estimate the Yearly Production QTY/volume
- 2. Estimate the necessary part price/margin/cost
- 3. Estimate the Dimensions/Tolerances needed
- 4. Pick the Manufacturing Process
 - 1. Understand the Limitations
 - 2. Research Best Practices
 - 3. Consult an Expert
- 5. Multiple Quotes: Multiple Vendors, Multiple Volumes
- 6. Commit to a Mfg Partner before the design is done

Examples of DFM for Plastic Injection Molding

▶ Production Launch:▶ Designing for Assembly

Goal: To minimize the labor costs, reduce errors

- Vertical Assembly Parts can be dropped on to each other
- Minimize the number of parts
- Minimize the number of fasteners
- Ensure tools/hands can fit inside if needed
- Add locating features (aligning pins)
- "Poka Yoke" There is only one way to put it together
- Color Coding

→ Production Launch: ▶ Financing Tooling Costs

- Tooling costs can be 100X-1,000X more expensive than your product
- It is very rare to just "cut a check" for production tooling.

Rather, the cost is amortized through early production

Tooling Costs are divided by the # of parts shipped, and the part cost is increased accordingly (with interest of course)

Most of the terms are negotiable

- Length of Amortization
- Part Cost
- Who pays for tooling changes/upgrades/maintenance
- Make sure you understand
 - How long will it last?
 - When will you own it outright?
 - When can you move it to another supplier if needed?
 - Is the tool solely yours in the mean time?

→ Production Launch: ▶ More Resources

- DFM & DFA: <u>http://www.dfma.com/</u>
- DOE Slides on <u>mHUB Drop Box Link</u>
 - Great slide deck on DFM/DFA for Electronics
- Thank You!
- Next Class: June 28: Quality Management and Control Methodologies